Компьютерная алгебра в программе Mathematica 4

         

Функции вычислительной геометрии — ComputationalGeometry



Функции вычислительной геометрии — ComputationalGeometry




В подпакете ComputationalGeometry заданы следующие функции, относящиеся к геометрическим поверхностям:

  • ConvexHull [ { {xl, yl...}, {х2, у2,...},...] — вычисляет выпуклость оболочки в точках плоскости;
  • DelaunayTriangulation[ {{xl,yl...}, {х2, у2,...},...] — вычисляет триангуляцию Делоне (разбивку на выпуклые треугольники) в точках плоскости;
  • DelaunayTriangulationQ [ {{xl, yl...}, {х2, у2,...},...}, trival] — тестирует триангуляцию Делоне в точках плоскости; ,

  • DiagramPlot [ {{xl, yl...}, {х2, у2,...},...] — построение диаграммы по заданным точкам (после списка параметров возможны спецификации в виде списков diagvert, diagval);
  • PlanarGraphPlot [{ {xl, yl...}, {x2, y2,...},...] — построение планарного графа по заданным точкам (после списка параметров возможна спецификация в виде списка indexlist или vals);
  • TriangularSurfacePlot [ {{xl,yl, zl}, {x2,y2, z2 },...] — строит поверхность из треугольников по заданным точкам;
  • VoronoiDiagramm[ {{xl, yl...}, {х2, у2,...},...] — вычисляет данные для построения диаграммы Вороного.
Примеры применения этих функций приведены ниже:

<<DiscreteMath`ComputationalGeometry`

ConvexHull[{{0,2}, {1,1}, {0,0}, {2,0}, {1,2}}]

{4, 5, 1, 3}

delval = (DelaunayTriangulation[{{l,2J, {0,3}, {1,1}}]) // Short[#,2]&

{{1, {2, 3}}, {2, {3, 1}}, {3, {1, 2}}}

VoronoiDiagram[{{l,2}, {0,3}, {1,1}}]

{{{-0.50000000000000, 1.5000000000000},

Ray [{- 0.50000000000000, 1.5000000000000},

{1.5000000000000, 3.5000000000000}],

Ray [ {- 0.50000000000000, 1.5000000000000},

{2.0000000000000,1.50000000000000}],

Ray[ {- 0.50000000000000, 1.5000000000000},

{-2.5000000000000, 0.50000000000000} ]},

{{1, {1, 3, 2}}, {2, {1, 2, 4}}, {3, {1, 4, 3}}}}

Рисунок 11.14 показывает задание на плоскости массива точек data2D, построение планарного графа и его выпуклой огибающей с помощью функции Convex-Hull.









Содержание раздела