Пример 4.1.
График функции Sin[x]/x и ее производной
В целом средства для символьного вычисления производных, имеющиеся в ядре системы Mathematica, охватывают практически все важные типы математических выражений. Они могут включать в себя как элементарные, так и специальные математические функции, что выгодно отличает систему Mathematica от некоторых простых систем символьной математики, таких как Derive.
Использование функции Dt демонстрируют примеры, приведенные ниже.
Ввод (In)
Вывод (Out)
Dt[x*n,x]
x
n
(n/x +Dt[n, x] Log[x] )
Dt[x*Sin[x] ,x]
xCos[x] + Sin[x]
Dt[Exp[x/b],x]
e
x/b
/b(1/b-xDt[b, x]/b
2
)
Dt[a*x
^
2+b*x+c,x]
b+ 2 ax + x
2
Dt[a, x] + xDt[b, x] + Dt[c, x]
Dt[x*n,{x,2}]
x
n
(n/x+Dt[n, x] Log[x] ) + x
n
(-n/x
2
2Dt[n, x] +Dt[n, {x/2}]Log[x])
Dt[Log[3*x/4],x]
1/x
Dt[BesselJ[2,x] ,x]
1/2(BesselJ[l, x] -BesselJ[3, x] )
Dt[ChebyshevT[4,x] ,x]
-16x + 32x
3
Обратите внимание на то, что порой результаты для одного и того же дифференцируемого выражения у функций D и Dt заметно различаются. Это вполне закономерно вытекает из различных определений данных функций.