Компьютерная алгебра в программе Mathematica 4

         

Функции линейной алгебры



Функции линейной алгебры

Следующая группа функций системы Mathematica позволяет осуществлять над векторами и матрицами основные операции, используемые в линейной алгебре:

  • Cross [vl,v2, v3,...] — векторное произведение (может задаваться в виде v1*v2*v3*...);
  • Det [m] — возвращает детерминант (определитель) квадратной матрицы m;
  • DiagonalMatrix [list] — возвращает диагональную матрицу с главной диагональю, сформированной из элементов списка list, и нулевыми остальными элементами матрицы;


  • Dot [a, b, с] — возвращает произведения векторов, матриц и тензоров. Операцию произведения можно задавать также в виде а. b. с;
  • Eigensystem[m] — возвращает список {values, vectors} собственных значений и собственных векторов квадратной матрицы т;
  • Eigenvalues [m] — возвращает список собственных значений квадратной матрицы m;
  • Eigenvectors [m] — возвращает список собственных векторов квадратной матрицы m;
  • IdentityMatrix [n] — возвращает единичную матрицу размером пхп (у нее диагональные элементы имеют значения 1, остальные 0);
  • Inverse [m] — возвращает обратную матрицу для квадратной матрицы т, то есть матрицу m- 1 , которая, будучи умноженной на исходную матрицу, дает единичную матрицу;
  • LinearSolve [m, b] — возвращает вектор х, представляющий собой решение матричного уравнения m. x==b, где m — матрица коэффициентов левой части системы линейных уравнений, х — вектор неизвестных и b — вектор свободных членов в правой части системы;
  • Tr [list] — возвращает след матрицы или тензора (эта функция есть только у Mathematica 4);
  • Transpose [m] — возвращает транспонированную матрицу, у которой столбцы и строки меняются местами в сравнении -с исходной матрицей m;
  • RowReduce [m] — производит гауссовское исключение переменных, возвращая упрощенную форму матрицы m, полученную путем линейного комбинирования строк.
Следующие примеры иллюстрируют применение основных из этих функций.

Ввод (In)

Вывод (Out)

A: =IdentityMatrix [3]

А

{{1,

0,

0},

{0, 1, 0}, {0, 0, 1}}

MatrixExp [A]

{{E,

0,

0},

{0, E, 0}, {0, 0, E}}

MatrixQ [A]

True

MatrixPower [MatrixExp [A] , -1 . 5]

{{0. {0,

22313, 0, 0}, {0, 0.22313, 0), 0, 0.22313}}

А+{{1,2,3},{4,5,6},{7,8,9}}

{{2,

2,

3},

{4, 6, 6}, {7, 8, 10}}

m:={{1,2},{3,7}}

Inverse [m]

{{7,

-2}

, (

-3, 1}}

MatrixQ [m]

True

RowReduce [m]

{{1,

0},

{0

, 1}}

Вычисление детерминанта матрицы и функций, относящихся к собственным значениям, представлено на рис. 3.11.



Содержание раздела